NTU, December 2014

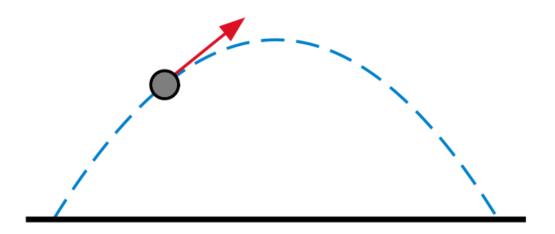
Thinking about selection and genetic drift... in terms of trajectories

David Waxman Centre for Computational Systems Biology Fudan University, Shanghai PRC

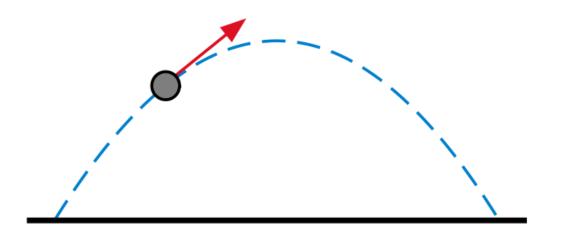
Guanghua Tower at Fudan University

Content

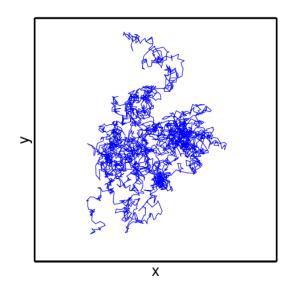
- Introduce trajectories
- Introduce selection
- Introduce random genetic drift
- Talk about conditioned trajectories and some implications



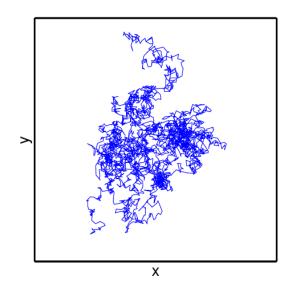
These obey well established laws (Newton,...)



These are 'deterministic' trajectories

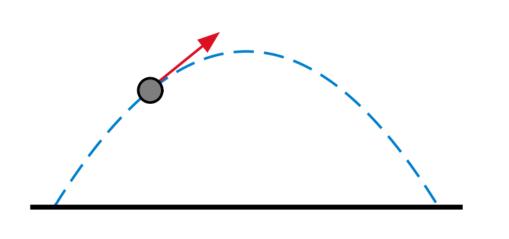


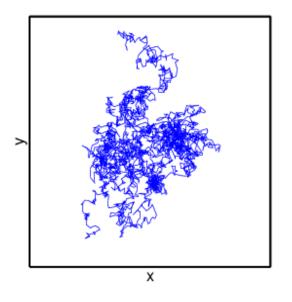
There are natural generalisations that include Brownian motion - randomness (Langevin, Einstein, Bachelier, ...)



These are 'stochastic' trajectories

In biology there are also trajectories that are analogous to





Deterministic

Stochastic

But ... trajectories of biology are in a different space

- Simplest case: a single genetic locus with two alternative genes i.e., two *alleles*
- The trajectory is in the space of allele frequencies

What is allele frequency - the variable in a biological trajectory?

Answer:

With the two alleles A and B, the variable is

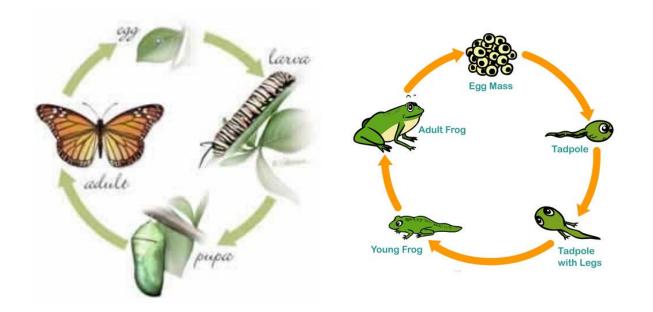
 X_t = frequency (proportion) of A alleles in generation t

 $= \frac{\text{number of } A \text{ alleles in population}}{\text{number of } A \text{ alleles } + \text{ number of } B \text{ alleles}}$

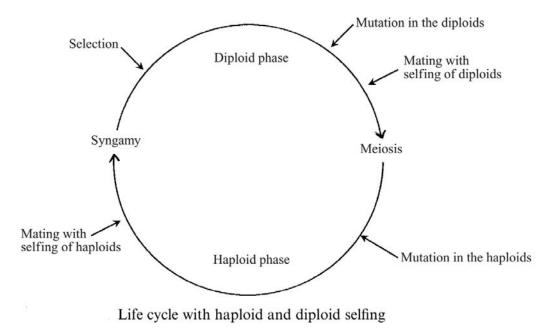
And because it is a proportion

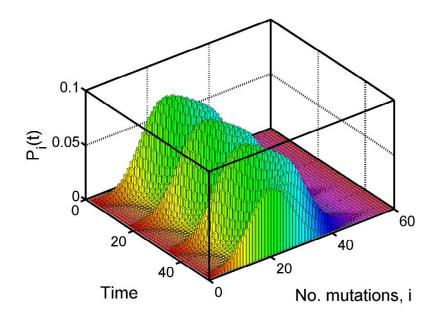
$$0 \leq X_t \leq 1.$$

Behaviour of X_t comes from the processes of a lifecycle



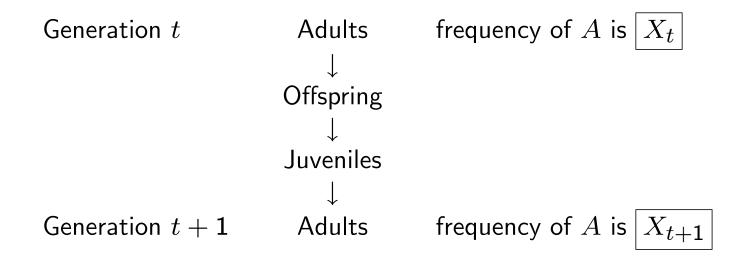
Lifecycles can be complicated (ferns and fungi)





Distribution of mutations in ferns and fungi - oscillates

Lifecycle



Change of allele frequency when population size is infinite $(N = \infty)$

$$X_{t+1} = X_t + M(X_t)$$

Deterministic

M(x) comes from evolutionary forces (selection, mutation, migration,...)

Example: deterministic dynamics with selection

Each individual carries 2 genes (diploid).

Fitnesses of AA, AB and BB individuals are 1 + 2s, 1 + s and 1

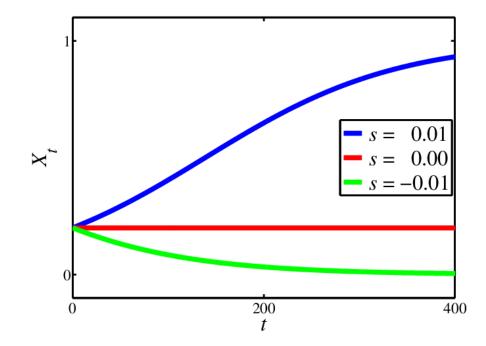
 $\frac{\text{mean number of offspring of }AA \text{ individuals}}{\text{mean number of offspring of }BB \text{ individuals}} = 1 + 2s$

 $\frac{\text{mean number of offspring of }AB \text{ individuals}}{\text{mean number of offspring of }BB \text{ individuals}} = 1 + s$

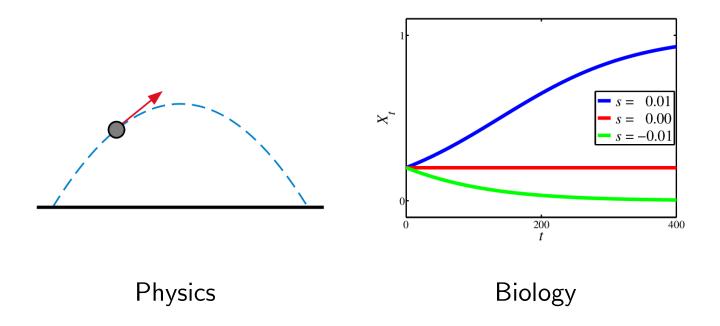
Leads to

$$X_{t+1} = X_t + sX_t(1 - X_t)$$

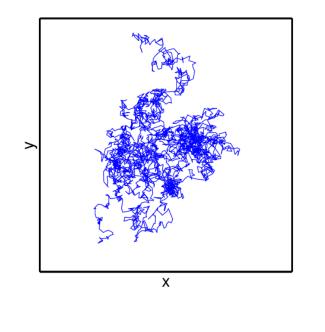
Consequences of
$$X_{t+1} = X_t + sX_t(1 - X_t)$$

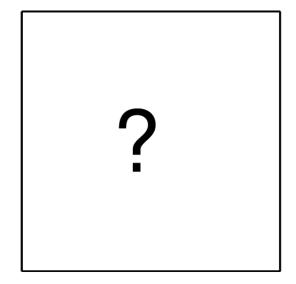


Deterministic trajectories in physics and biology



Where do the stochastic trajectories of biology come from?



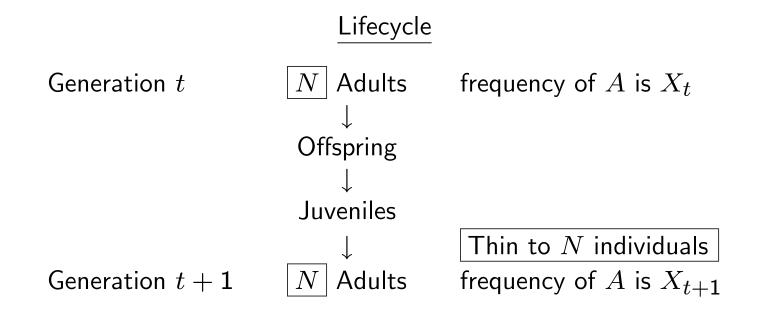


Physics

Biology

Where do the stochastic trajectories of biology come from?

Answer: Random genetic drift, which occurs in a finite population ($N < \infty$)



Consequence of drift

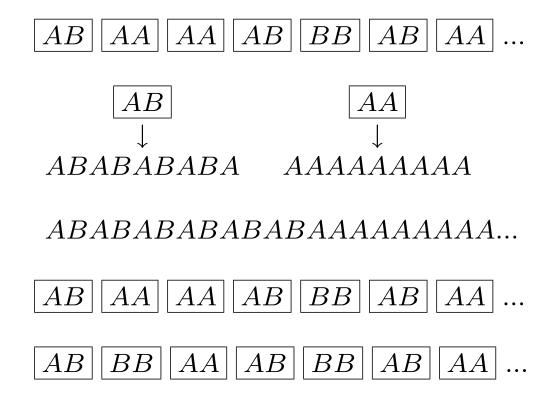
In a finite population ($N<\infty$) the deterministic equation

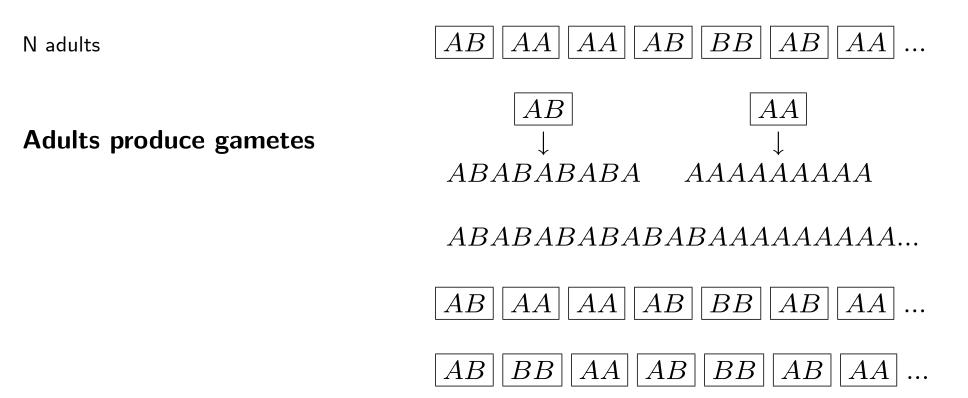
$$X_{t+1} = X_t + sX_t(1 - X_t)$$

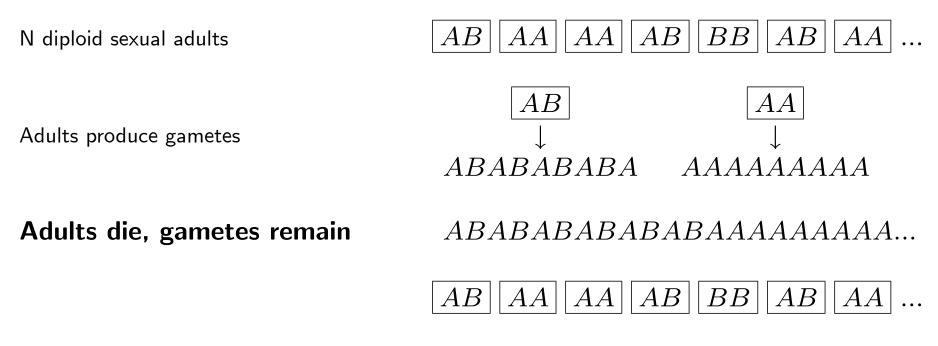
does NOT apply - because of random genetic drift.

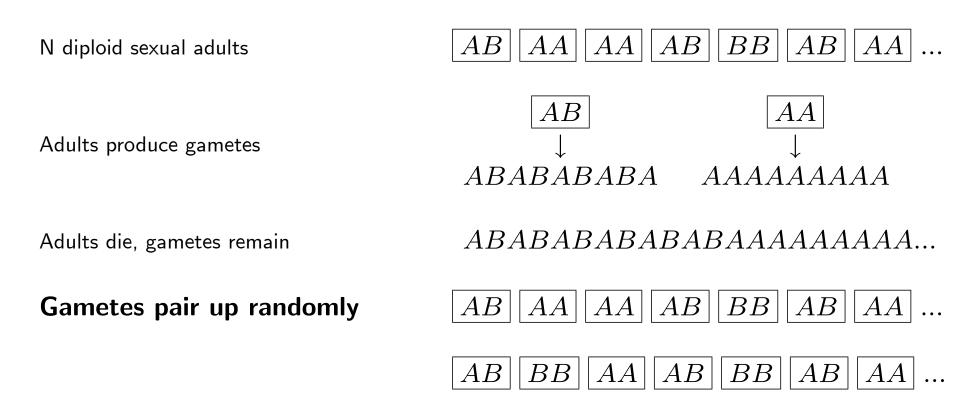
What is random genetic drift?

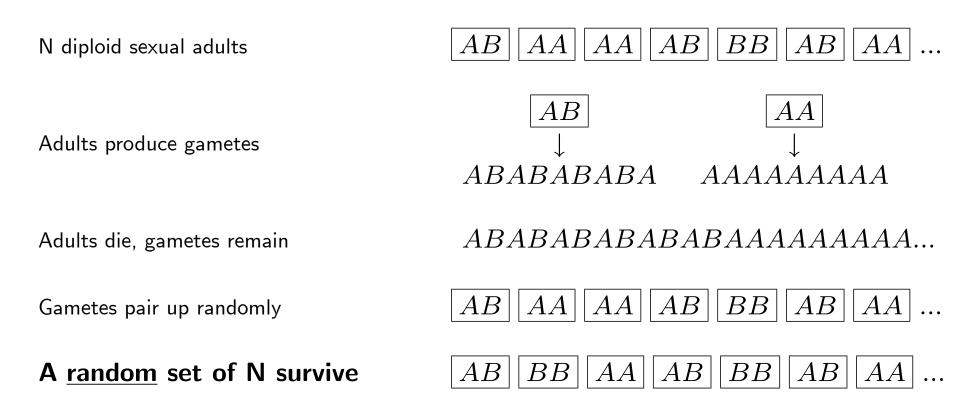
N diploid sexual adults

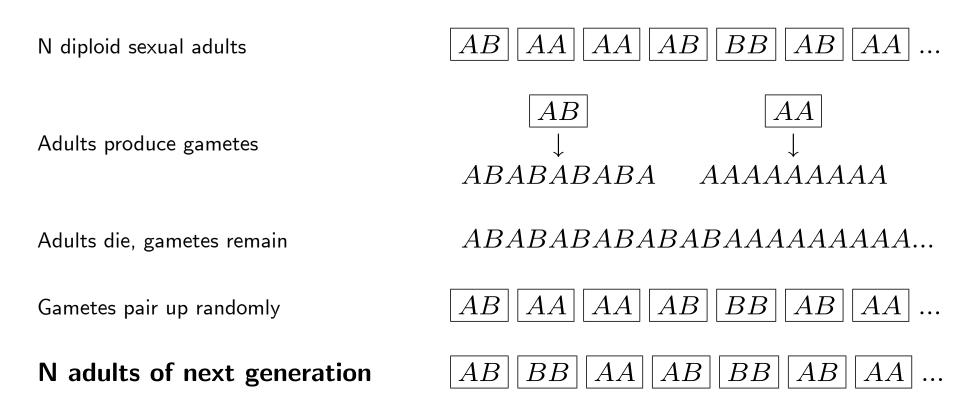




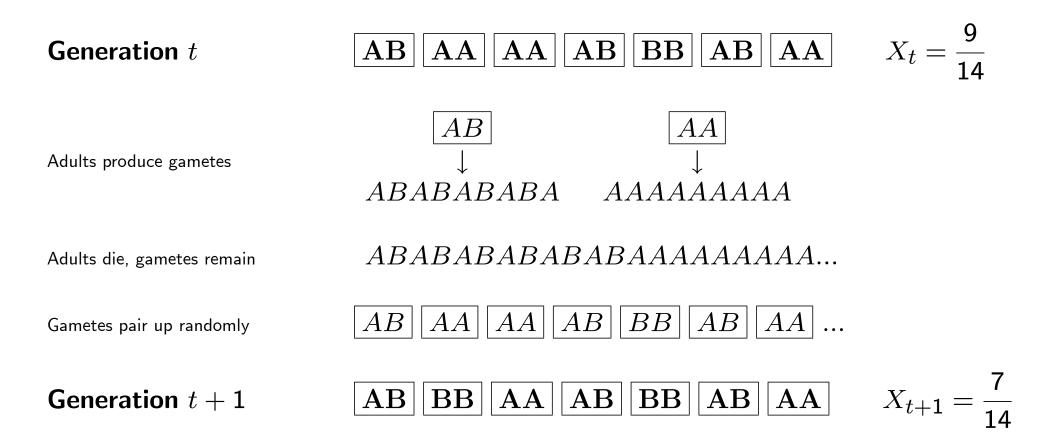








Random genetic drift - causes trajectory to be stochastic



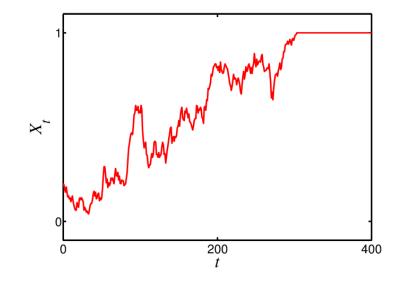
Random genetic drift - leads to stochastic trajectories

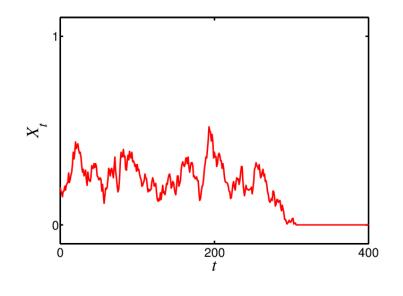
$$X_t = \frac{\text{Number of } A \text{ alleles}}{\text{Total Number of alleles}}$$

randomly takes values on

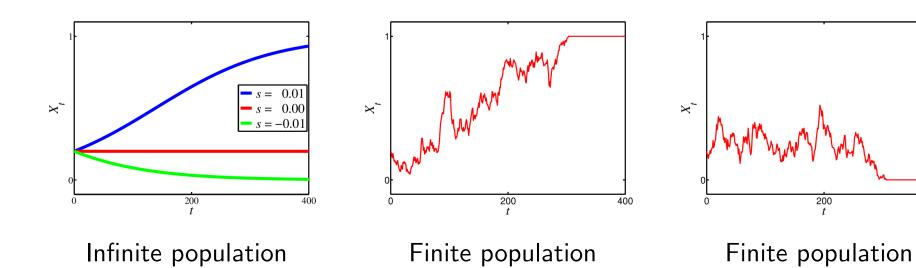
$$\left[rac{0}{2N},rac{1}{2N},rac{2}{2N},...,rac{2N}{2N}
ight]$$

Drift dynamics



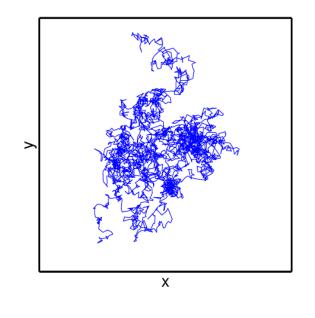


Comparison

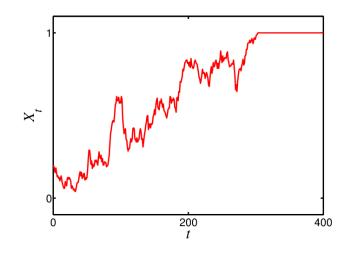


400

Stochastic trajectories in physics and biology

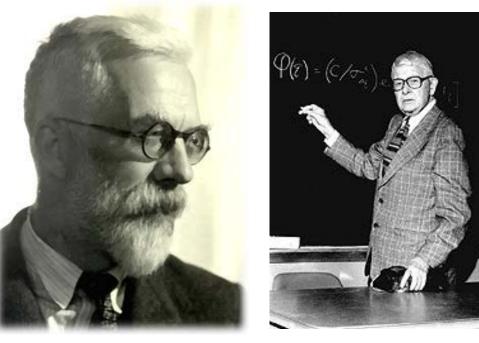


Physics



Biology (finite population)

Two scientists mathematically formulated the problem of genetic drift



R. A. Fisher

Sewall Wright

Statistical formulation of genetic drift

 $\{N\}$ = a population with N individuals

Statistical formulation of genetic drift of Wright and Fisher

Imagine many copies of a population, each with N individuals

Wright and Fisher followed the fates of these copies of a population.

All initially *identical*

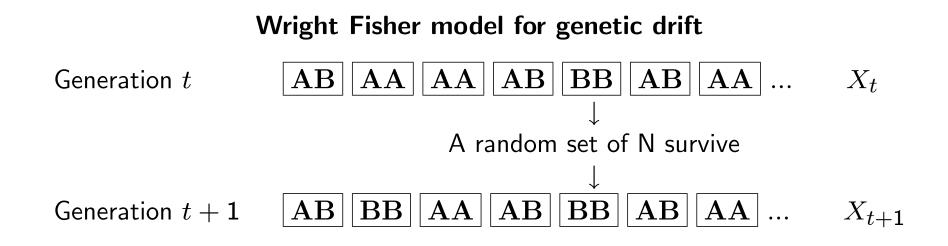
Yields statistical information

For example, with just selection, <u>all</u> populations eventually fix A or B

$$\begin{cases} N \\ A \text{ fixed} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \end{cases} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \end{cases} \begin{cases} N \\ B \text{ fixed} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases} \end{cases}$$

 $\{N\}_{A \text{ fixed}} = a \text{ population with } A \text{ allele fixed}$ estimate of fixation probability of A = 5/15 = 1/3

 $\{N\}_{B \text{ fixed}} = a \text{ population with } B \text{ allele fixed}$ estimate of fixation probability of B = 10/15 = 2/3



Wright-Fisher model gives the rule

$$X_{t+1} = \frac{\mathsf{Binom}(2N, X_t + sX_t(1 - X_t))}{2N}$$

Binom(n, p) = binomial random <u>number</u> = No. successes on n trials, each with probability p of success

Wright Fisher model for genetic drift

Define

 $f_{t,n}$ = probability of n copies of the A allele in generation t

= probability that
$$X_t$$
 has the value $\frac{n}{2N}$ $n = 0, 1, 2, ..., 2N.$

 $f_{t,n}$ obeys

$$f_{t+1,n} = \sum_{m=0}^{2N} W_{n,m} f_{t,m}$$
 Markov chain

Wright Fisher model

Probability distribution obeys $f_{t+1,n} = \sum_{m=0}^{2N} W_{n,m} f_{t,m}$

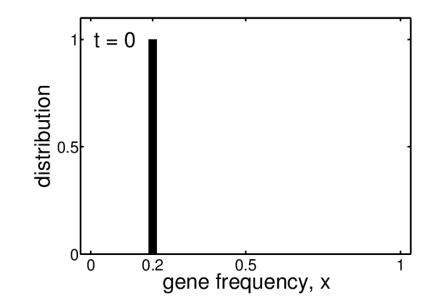
 $W_{n,m}$ = transition probabilities, contains information about probabilities of trajectories. A trajectory with

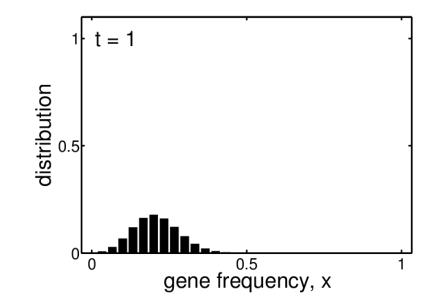
Number of A alleles	time
a	0
b	1
C	2
:	:

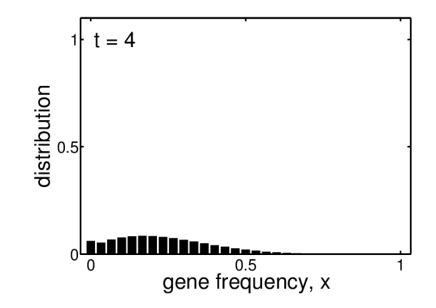
has

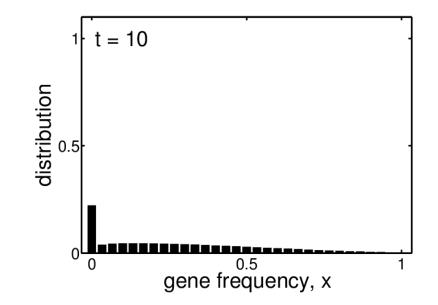
probability =
$$\cdots W_{d,c} W_{c,b} W_{b,a}$$

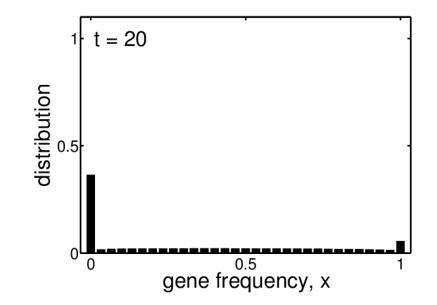
Can look at where trajectories have reached, after time t

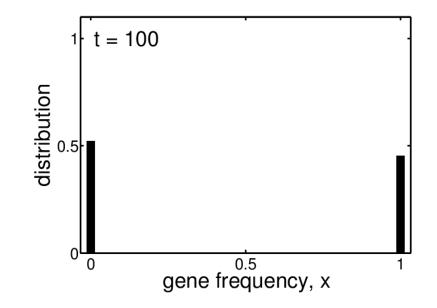




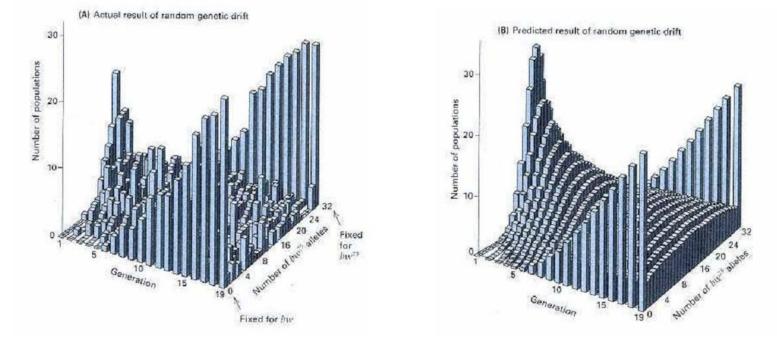








Experimental basis



From experiments on fly populations

From theory

The above behaviour suggests a sort of diffusion

To make analytical progress, use the

"diffusion approximation"

- replaces $f_{t+1,n} = \sum_{m=0}^{2N} W_{n,m} f_{t,m}$ by a diffusion equation which can sometimes be solved.

Diffusion approximation of
$$f_{t+1,n} = \sum_{m=0}^{2N} W_{n,m} f_{t,m}$$

- Approximate time t as continuous
- Approximate frequency X_t as continuous: X(t)
- $f_{t,n} \rightarrow f(x,t) = \text{probability density of } X(t)$
- $f_{t+1,n} = \sum_{m=0}^{2N} W_{n,m} f_{t,m} \rightarrow \text{diffusion equation.}$

$$\frac{\partial}{\partial t}K(x,t|y,u) = \frac{1}{4N}\frac{\partial^2}{\partial x^2}\left[x(1-x)K(x,t|y,u)\right] - \frac{\partial}{\partial x}\left[sx(1-x)K(x,t|y,u)\right]$$

Diffusion approximation

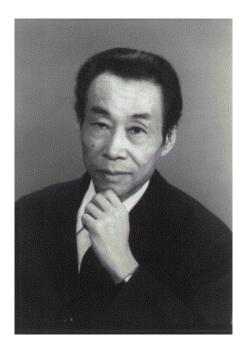
$$f_{t+1,n} = \sum_{m=0}^{2N} W_{n,m} f_{t,m} \quad \text{is approximated by}$$
$$\frac{\partial}{\partial t} K(x,t|y,u) = \frac{1}{4N} \frac{\partial^2}{\partial x^2} \left[x(1-x) K(x,t|y,u) \right] - \frac{\partial}{\partial x} \left[sx(1-x) K(x,t|y,u) \right]$$

or equivalently

$$X_{t+1} = \frac{\mathsf{Binom}(2N, X_t + sX_t(1 - X_t))}{2N}$$
 is approximated by

$$dX_t = sX_t(1 - X_t)dt + \sqrt{\frac{X_t(1 - X_t)}{2N}}dB_t$$

Motoo Kimura - famous population geneticist



Extensively developed and applied the diffusion approximation

Conditioning

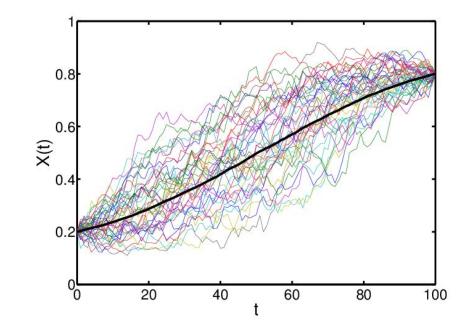
It is very natural to have observational data in the form of

an initial frequency, y, at an initial time, 0

an final frequency, z, at a final time, T

In this case we look only at trajectories going through these points.

For example from ancient DNA that is \sim 100,000 years old and DNA in modern humans.



Trajectories starting at frequency 0.2 at t = 0and reaching frequency 0.8 at t = 100

What can we say about the conditioned problem?

Conditioning:

```
initial frequency is y at time t = 0
```

final frequency is z at time t = T

From a diffusion analysis: a conditioned problem has an identical description of an unconditioned one except selection gets modified:

selection strength $s \rightarrow s_{fict}(x, t)$ (depends on y, z and T)

How does this come about?

The unconditioned problem, has fundamental solution (probability density of X(t) at value x)

$$K(x,t|y,u) = E\left[\delta(x - X(t))|X(u) = y\right]$$

The conditioned problem has a fundamental solution, that achieves z at final time T, given by

$$K^{[z,T]}(x,t|y,u) = \frac{K(z,T|x,t)K(x,t|y,u)}{K(z,T|y,u)}$$

What can we say about the conditioned problem?

Unconditioned

$$\frac{\partial}{\partial t}K(x,t|y,u) = \frac{1}{4N_e}\frac{\partial^2}{\partial x^2}\left[x(1-x)K(x,t|y,u)\right] - \frac{\partial}{\partial x}\left[sx(1-x)K(x,t|y,u)\right]$$

Conditioned

$$\frac{\partial}{\partial t}K(x,t|y,u) = \frac{1}{4N_e}\frac{\partial^2}{\partial x^2}\left[x(1-x)K(x,t|y,u)\right] - \underbrace{\frac{\partial}{\partial x}\left[s_{\mathsf{fict}}(x,t)x(1-x)K(x,t|y,u)\right]}_{\underbrace{\partial x}}$$

What is the form of $s_{fict}(x, t)$?

For trajectories that fix by a specific time ${\cal T}$

$$s_{\text{fict}}(x,t) = s + \frac{1}{2N_e} \frac{\partial}{\partial x} P_{fix}(T|x,t)$$

$$= s \coth(2N_e sx) \text{ for } T \to \infty$$

where generally

$$P_{fix}(T|x,t) = \begin{cases} \text{probability of fixing by time } T, \text{ given} \\ \text{an initial frequency of } x \text{ at time } t \end{cases}$$

What is the form of $s_{fict}(x, t)$?

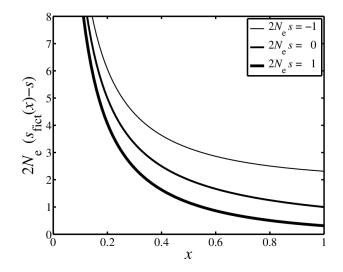
For trajectories that achieve frequency z by a specific time T

$$s_{\mathsf{fict}}(x,t) = s + \frac{1}{2N_e} \frac{\partial}{\partial x} K(z,T|x,t)$$

where

 $K(z,T|x,t) = \begin{array}{l} \text{probability density of the frequency at time } T, \\ \text{frequency } z, \text{ given a frequency of } x \text{ at time } t \end{array}$

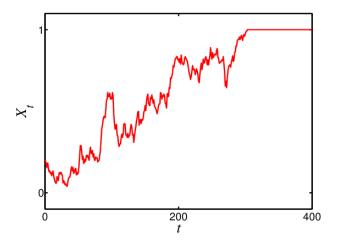
Conditioning leads to: selection strength $s \rightarrow s_{fict}(x, t)$



Much of the selection in a conditioned problem is fictitious: $|s| \ll s_{\text{fict}}(x,t)$

Example

Suppose we are given a single trajectory, where the A allele fixes



Example

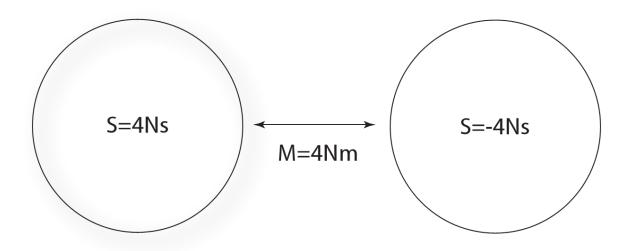
There are two alternatives

- 1. Assume this is a consequence of deterministic dynamics of a very large population, so $X_{t+1} = X_t + sX_t(1 - X_t)$
- 2. Assume this just is a chance fixation in a finite population then it is a conditioned trajectory that arises from a problem with $s \rightarrow s_{\text{fict}}(x, t)$.

If (2) is correct, then (1) can drastically overestimate the true value of s (can be off by more than 1000% or even of the wrong sign).

- Strong evolutionary forces may be invoked in problems where effectively, conditioning has been carried out
- These strong forces may largely be an outcome of the conditioning
- They do not have a real existence and can strongly distort estimates of selection strength and other parameters

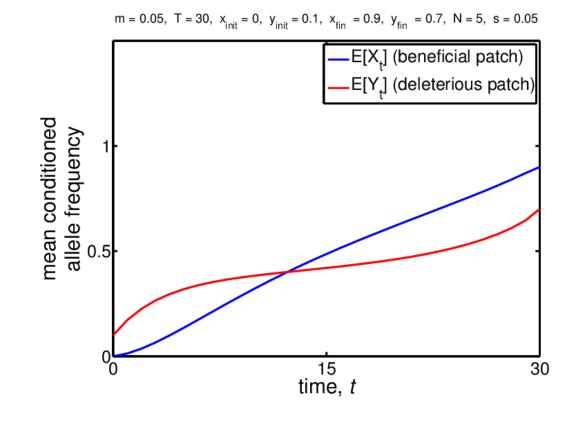
Other problems



Problems of drift, involving spatial structure

$$X(t+1) = \frac{\text{Bin}(2N, X(t) + D_1(X(t), Y(t)))}{2N}$$
$$Y(t+1) = \frac{\text{Bin}(2N, Y(t) + D_2(X(t), Y(t)))}{2N}$$

Problems with spatial structure involve coupled diffusion equations...



Mean trajectories in a diffusion problem involving spatial structure

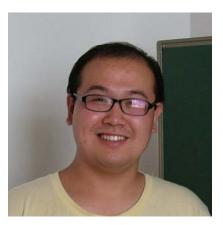
Summary

- Problems in genetics and evolution can usefully be looked at in terms of trajectories
- Random genetic drift can lead to very different trajectories compared with deterministic dynamics of an infinite population
- The act of conditioning restricting trajectories because of observations, can lead to fictitious forces in the problem which can greatly distort parameter estimates

Acknowledgements

Martin Lascoux

Andy Overall



Lei Zhao

Thank you for listening