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Physics deals with trajectories

These obey well established laws (Newton,...)



Physics deals with trajectories

These are ‘deterministic’trajectories



Physics deals with trajectories

There are natural generalisations that include Brownian motion - randomness
(Langevin, Einstein, Bachelier, ...)



Physics deals with trajectories

These are ‘stochastic’trajectories



In biology there are also trajectories that are analogous to

Deterministic Stochastic



But ... trajectories of biology are in a different space

• Simplest case: a single genetic locus with two alternative genes - i.e., two alleles

• The trajectory is in the space of allele frequencies



What is allele frequency - the variable in a biological trajectory?

Answer:

With the two alleles A and B, the variable is

Xt = frequency (proportion) of A alleles in generation t

=
number of A alleles in population

number of A alleles + number of B alleles

And because it is a proportion

0 ≤ Xt ≤ 1.



Behaviour of Xt comes from the processes of a lifecycle



Lifecycles can be complicated (ferns and fungi)



Distribution of mutations in ferns and fungi - oscillates



Lifecycle

Generation t Adults frequency of A is Xt
↓

Offspring
↓

Juveniles
↓

Generation t+ 1 Adults frequency of A is Xt+1



Change of allele frequency when population size is infinite (N =∞)

Xt+1 = Xt +M(Xt)

Deterministic

M(x) comes from evolutionary forces (selection, mutation, migration,...)



Example: deterministic dynamics with selection

Each individual carries 2 genes (diploid).

Fitnesses of AA, AB and BB individuals are 1 + 2s, 1 + s and 1

mean number of offspring of AA individuals

mean number of offspring of BB individuals
= 1 + 2s

mean number of offspring of AB individuals

mean number of offspring of BB individuals
= 1 + s

Leads to

Xt+1 = Xt + sXt(1−Xt)



Consequences of Xt+1 = Xt + sXt(1−Xt)



Deterministic trajectories in physics and biology

Physics Biology



Where do the stochastic trajectories of biology come from?

Physics Biology



Where do the stochastic trajectories of biology come from?

Answer: Random genetic drift, which occurs in a finite population (N <∞)

Lifecycle

Generation t N Adults frequency of A is Xt
↓

Offspring
↓

Juveniles
↓ Thin to N individuals

Generation t+ 1 N Adults frequency of A is Xt+1



Consequence of drift

In a finite population (N <∞) the deterministic equation

Xt+1 = Xt + sXt(1−Xt)

does NOT apply - because of random genetic drift.



What is random genetic drift?



Random genetic drift - over 1 generation

N diploid sexual adults AB AA AA AB BB AB AA ...

AB AA
↓ ↓

ABABABABA AAAAAAAAA

ABABABABABABAAAAAAAAA...

AB AA AA AB BB AB AA ...

AB BB AA AB BB AB AA ...



Random genetic drift - over 1 generation

N adults AB AA AA AB BB AB AA ...

Adults produce gametes
AB AA
↓ ↓

ABABABABA AAAAAAAAA

ABABABABABABAAAAAAAAA...

AB AA AA AB BB AB AA ...

AB BB AA AB BB AB AA ...



Random genetic drift - over 1 generation

N diploid sexual adults AB AA AA AB BB AB AA ...

Adults produce gametes
AB AA
↓ ↓

ABABABABA AAAAAAAAA

Adults die, gametes remain ABABABABABABAAAAAAAAA...

AB AA AA AB BB AB AA ...

AB BB AA AB BB AB AA ...



Random genetic drift - over 1 generation

N diploid sexual adults AB AA AA AB BB AB AA ...

Adults produce gametes
AB AA
↓ ↓

ABABABABA AAAAAAAAA

Adults die, gametes remain ABABABABABABAAAAAAAAA...

Gametes pair up randomly AB AA AA AB BB AB AA ...

AB BB AA AB BB AB AA ...



Random genetic drift - over 1 generation

N diploid sexual adults AB AA AA AB BB AB AA ...

Adults produce gametes
AB AA
↓ ↓

ABABABABA AAAAAAAAA

Adults die, gametes remain ABABABABABABAAAAAAAAA...

Gametes pair up randomly AB AA AA AB BB AB AA ...

A random set of N survive AB BB AA AB BB AB AA ...



Random genetic drift - over 1 generation

N diploid sexual adults AB AA AA AB BB AB AA ...

Adults produce gametes
AB AA
↓ ↓

ABABABABA AAAAAAAAA

Adults die, gametes remain ABABABABABABAAAAAAAAA...

Gametes pair up randomly AB AA AA AB BB AB AA ...

N adults of next generation AB BB AA AB BB AB AA ...



Random genetic drift - causes trajectory to be stochastic

Generation t AB AA AA AB BB AB AA Xt =
9

14

Adults produce gametes

AB AA
↓ ↓

ABABABABA AAAAAAAAA

Adults die, gametes remain ABABABABABABAAAAAAAAA...

Gametes pair up randomly AB AA AA AB BB AB AA ...

Generation t+ 1 AB BB AA AB BB AB AA Xt+1 =
7

14



Random genetic drift - leads to stochastic trajectories

Xt =
Number of A alleles

Total Number of alleles

randomly takes values on [
0

2N
,

1

2N
,

2

2N
, ...,

2N

2N

]



Drift dynamics

If Xt = 1, the N adults in the population are all

AA AA AA AA AA AA AA AA ...

and no further change occurs... FIXATION



Drift dynamics

If Xt = 0, the N adults in the population are all

BB BB BB BB BB BB BB BB ...

and no further change occurs... LOSS



Comparison

Infinite population Finite population Finite population



Stochastic trajectories in physics and biology

Physics
Biology (finite population)



Two scientists mathematically formulated the problem of genetic drift

R. A. Fisher Sewall Wright



Statistical formulation of genetic drift

{N} = a population with N individuals

= AB AA AA AB BB AB AA ...︸ ︷︷ ︸
N individuals



Statistical formulation of genetic drift of Wright and Fisher

{N} {N} {N} {N} {N}
{N} {N} {N} {N} {N}
{N} {N} {N} {N} {N}

Imagine many copies of a population, each with N individuals

Wright and Fisher followed the fates of these copies of a population.

All initially identical



Yields statistical information

For example, with just selection, all populations eventually fix A or B

{N}A fixed {N}B fixed {N}B fixed {N}B fixed {N}B fixed
{N}B fixed {N}A fixed {N}A fixed {N}B fixed {N}A fixed
{N}B fixed {N}B fixed {N}B fixed {N}B fixed {N}A fixed

{N}A fixed = a population with A allele fixed
estimate of fixation probability of A = 5/15 = 1/3

{N}B fixed = a population with B allele fixed
estimate of fixation probability of B = 10/15 = 2/3



Wright Fisher model for genetic drift

Generation t AB AA AA AB BB AB AA ... Xt
↓

A random set of N survive
↓

Generation t+ 1 AB BB AA AB BB AB AA ... Xt+1

Wright-Fisher model gives the rule

Xt+1 =
Binom(2N,Xt + sXt(1−Xt))

2N

Binom(n, p) = binomial random number
= No. successes on n trials, each with probability p of success



Wright Fisher model for genetic drift

Define

ft,n = probability of n copies of the A allele in generation t

= probability that Xt has the value
n

2N
n = 0, 1, 2, ..., 2N.

ft,n obeys

ft+1,n =
2N∑
m=0

Wn,mft,m Markov chain



Wright Fisher model

Probability distribution obeys ft+1,n =
∑2N
m=0Wn,mft,m

Wn,m = transition probabilities, contains information about probabilities of trajec-
tories. A trajectory with

Number of A alleles time
a 0
b 1
c 2
... ...

has

probability = · · ·Wd,cWc,bWb,a



Can look at where trajectories have reached, after time t



Distribution of position after time t



Distribution of position after time t



Distribution of position after time t



Distribution of position after time t



Distribution of position after time t



Distribution of position after time t



Experimental basis

From experiments on fly populations From theory



The above behaviour suggests a sort of diffusion

To make analytical progress, use the

“diffusion approximation”

- replaces ft+1,n =
∑2N
m=0Wn,mft,m by a diffusion equation which can sometimes

be solved.



Diffusion approximation of ft+1,n =
∑2N
m=0Wn,mft,m

• Approximate time t as continuous

• Approximate frequency Xt as continuous: X(t)

• ft,n → f(x, t) = probability density of X(t)

• ft+1,n =
∑2N
m=0Wn,mft,m → diffusion equation.

∂

∂t
K(x, t|y, u) =

1

4N

∂2

∂x2
[x(1− x)K(x, t|y, u)]− ∂

∂x
[sx(1− x)K(x, t|y, u)]



Diffusion approximation

ft+1,n =
∑2N
m=0Wn,mft,m is approximated by

∂

∂t
K(x, t|y, u) =

1

4N

∂2

∂x2
[x(1− x)K(x, t|y, u)]− ∂

∂x
[sx(1− x)K(x, t|y, u)]

or equivalently

Xt+1 =
Binom(2N,Xt + sXt(1−Xt))

2N
is approximated by

dXt = sXt(1−Xt)dt+

√
Xt(1−Xt)

2N
dBt



Motoo Kimura - famous population geneticist

Extensively developed and applied the diffusion approximation



Conditioning

It is very natural to have observational data in the form of

an initial frequency, y, at an initial time, 0

an final frequency, z, at a final time, T

In this case we look only at trajectories going through these points.

For example from ancient DNA that is ∼ 100, 000 years old and DNA in modern
humans.



Trajectories starting at frequency 0.2 at t = 0

and reaching frequency 0.8 at t = 100



What can we say about the conditioned problem?

Conditioning:

initial frequency is y at time t = 0

final frequency is z at time t = T

From a diffusion analysis: a conditioned problem has an identical description of an
unconditioned one except selection gets modified:

selection strength s→ sfict(x, t) (depends on y, z and T )



How does this come about?

The unconditioned problem, has fundamental solution (probability density of X(t)

at value x)

K(x, t|y, u) = E [δ(x−X(t))|X(u) = y]

The conditioned problem has a fundamental solution, that achieves z at final time

T , given by

K[z,T ](x, t|y, u) =
K(z, T |x, t)K(x, t|y, u)

K(z, T |y, u)



What can we say about the conditioned problem?

Unconditioned

∂

∂t
K(x, t|y, u) =

1

4Ne

∂2

∂x2
[x(1− x)K(x, t|y, u)]− ∂

∂x
[sx(1− x)K(x, t|y, u)]

Conditioned

∂

∂t
K(x, t|y, u) =

1

4Ne

∂2

∂x2
[x(1− x)K(x, t|y, u)]− ∂

∂x
[sfict(x, t)x(1− x)K(x, t|y, u)]︸ ︷︷ ︸



What is the form of sfict(x, t)?

For trajectories that fix by a specific time T

sfict(x, t) = s+
1

2Ne

∂

∂x
Pfix(T |x, t)

= s coth (2Nesx) for T →∞

where generally

Pfix(T |x, t) =
probability of fixing by time T , given
an initial frequency of x at time t



What is the form of sfict(x, t)?

For trajectories that achieve frequency z by a specific time T

sfict(x, t) = s+
1

2Ne

∂

∂x
K(z, T |x, t)

where

K(z, T |x, t) =
probability density of the frequency at time T ,
frequency z, given a frequency of x at time t



Conditioning leads to: selection strength s→ sfict(x, t)

Much of the selection in a conditioned problem is fictitious: |s| � sfict(x, t)



Example

Suppose we are given a single trajectory, where the A allele fixes



Example

There are two alternatives

1. Assume this is a consequence of deterministic dynamics of a very large popula-
tion, so Xt+1 = Xt + sXt(1−Xt)

2. Assume this just is a chance fixation in a finite population - then it is a conditioned
trajectory that arises from a problem with s→ sfict(x, t).

If (2) is correct, then (1) can drastically overestimate the true value of s (can be off
by more than 1000% or even of the wrong sign).



• Strong evolutionary forces may be invoked in problems where effectively, condi-
tioning has been carried out

• These strong forces may largely be an outcome of the conditioning

• They do not have a real existence and can strongly distort estimates of selection
strength and other parameters



Other problems

Problems of drift, involving spatial structure



X(t+ 1) =
Bin (2N,X(t) +D1(X(t), Y (t))

2N

Y (t+ 1) =
Bin (2N,Y (t) +D2(X(t), Y (t))

2N

Problems with spatial structure involve coupled diffusion equations...



Mean trajectories in a diffusion problem involving
spatial structure



Summary

• Problems in genetics and evolution can usefully be looked at in terms of trajec-
tories

• Random genetic drift can lead to very different trajectories - compared with
deterministic dynamics of an infinite population

• The act of conditioning - restricting trajectories - because of observations, can
lead to fictitious forces in the problem which can greatly distort parameter esti-
mates
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